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Abstract 
The creation of new wavefields in deformed crystals, 
a phenomenon widely recognized as responsible for 
some contrast features in X-ray topography, has been 
demonstrated analytically for the first time only very 
recently [Balibar, Chukhovskii & Malgrange (1983). 
Acta Cryst. A39, 387-399] in the case of a constant 
strain gradient. In the present paper it is shown by 
means of computer experiments (i.e. by solving 
Takagi's equations numerically) that the most impor- 
tant results of the theoretical approach can be readily 
extended to variable strain gradients. In particular, 
the conjecture is verified that the creation takes place 
only in the region of maximum curvature of the 
wavefield trajectory. Its relative intensity is shown to 
be equal to exp (-2rr/iao[),  a0 being proportional to 
the value of the strain gradient in that region. The 
utility of these results is demonstrated in a refined 
interpretation of the dislocation contrast in plane- 
wave reflection topography. 

1. Introduction 
X-ray propagation in crystals distorted by a small 
constant strain gradient was first studied by Penning 
& Polder (1961) in the transmission (Laue) case. In 
the previous paper (paper I) (Gronkowski & Mal- 
grange, 1984), we have shown that Penning & Polder's 
theory can also be applied in the reflection (Bragg) 
case provided that the angle of incidence of the 
incident beam is chosen outside the total reflection 
range. 

The first approach to the specific phenomena 
appearing in the case of strongly distorted crystals 
was made by Balibar ( 1969a, b) and Authier & Balibar 
(1970), who showed theoretically that new wavefields 
should be excited when the modulus of the constant 
strain gradient/3 was significantly larger than a critical 
value/3,. Then, Balibar, Epelboin & Malgrange (1975) 
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studied the case of an incident pseudo-plane wave 
(i.e. a plane wave of finite lateral extent) impinging 
on a crystal distorted by a large constant strain 
gradient in the symmetric transmission case. By com- 
puter experiments based on Takagi's equations 
(Takagi, 1969) they were able to show that a wavefield 
propagating in the crystal with an intensity Iv gives 
rise to a new wavefield in the area where the beam 
curvature is maximum, extracting an intensity 

I = Io exp (-eli/31) (l) 
out of the original wavefield, e is a numerical factor 
determined from the results of the computer 
experiment. 

Recently, Balibar, Chukhovskii & Malgrange 
(1983) (abbreviated as BCM) treated analytically the 
creation of new wavefields in the symmetric trans- 
mission case and a constant strain gradient/3. They 
showed that the full form of (1) is 

I = Io exp (-2¢r/3c/l/3[) (2) 

and that the creation of new wavefields is accom- 
panied by interbranch scattering - wavefield 1 gives 
rise to a new wavefield of type 2 and reciprocally. 

The aim of this paper is to show by means of 
computer experiments that BCM results can be 
applied in the Bragg case if the angle of incidence 
lies outside the total reflection range, that they can 
be confirmed numerically for variable strain gradient 
(§ 3) and finally that they can be used to explain some 
contrast features in reflection plane-wave topography 
(§4). 

2. Theoretical 
Let us first recall the formula for the strain-gradient 
function/3 

1 02(h. u) 
/3 = kC(ghg~) ~/2 cos O~ OSo OSh ' (3) 

where k = 1/h is the wave vector, C is the polarization 
constant, 0a is Bragg's angle, Xh and X~ are the Fourier 
coefficients of the dielectric susceptibility, u is the 
displacement vector, h is the diffraction vector, Sh and 
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So are the coordinates along the reflected and refracted 
directions, respectively. 

The critical value tic introduced by Authier  & 
Balibar (1970) is 

flc= Tr/2A, (4) 

where 

A = A cos 0M C(XhX~) '/2 (5) 

is the extinction length. 
A dimensionless  parameter  a (related to the para- 

meter B of BCM) is introduced here 

c~ =/3//3c = 4B. (6) 

BCM presented their results in the special case of  
symmetr ic  Laue geometry and they used the usual 
deviat ion parameter  7/. In fact, the parameter  a 
defined by Gronkowski  & Malgrange (1984), which 
characterizes the point  on the dispersion surface 
regardless of  the geometry, can be used as well and 
so the BCM results can be readily extended to all 
cases where beams can be defined, i.e. in the Laue 
geometry and in the Bragg case outside the total 
reflection range. 

BCM obtained the wavefields propagat ing in the 
crystal through a Laplace integral of  parabol ic  cylin- 
der funct ions of two variables: the Laplace variable 
p and p - 2 i f l x .  Because of  the analogy between the 
two relations 

p ( x ) = p - 2 i ~ x  (7) 

and 

n(x)=n(o)+#x (8) 

[the latter written in the specific form for the sym- 
metric Laue case, r/(0) being the value of  7/ at the 
entrance surface and x the coordinate along the 
reflecting planes], they introduced the relation 

p = - 2 i n ( 0 ) .  (9) 

Then (9) allows the interpretat ion of each component  
of  the Laplace integral as a wave which propagates 
in the crystal for a given value of r/(0), i.e. a given 
incident  p lane wave. 

In the general  case (8) is replaced by equat ion (11 ) 
of  paper  I: 

a(x)  = ai + flx, (10) 

where ai is the value of a at the entrance surface. 
The last relation leads to p = - 2 i a i  and the same 
interpretat ion of the Laplace components  follows. 

The parabol ic  cyl inder  functions can be interpreted 
using their  asymptot ic  development  which can be 
appl ied  for large values of  the variables (here la,[ and 
la, I, where a, is the value of a at the exit point). 

Under  these assumptions  the BCM results can be 
summarized  as follows. 

(i) If a does not change sign in the crystal (i.e. 
does not attain zero value), wavefields propagate 
according to geometrical  optics theory. No new wave- 
field is created. Let us recall that a = 0 means  the tie 
point at the apex of  the dispersion surface and the 
energy flux parallel  to the reflecting planes. 

(ii) If  ae and ai are of opposite signs, then a new 
wavefield is created in the area where a = 0, i.e. when 
the tie point  attains the apex of  the dispersion surface. 
The new wavefield takes a fraction exp ( -2Tria l )  out 
of  the initial intensity. This result is i l lustrated in Fig. 
1. Whenever  we have a -- 0 along the wavefield trajec- 
tory a new wavefield is created with its tie point  at 
the apex of the other branch  of the dispersion surface 
(Fig. 2). 

The computer  calculations presented in § 3 were 
made to verify in the first place that the straightfor- 
ward extension of  the BCM results to the Bragg case, 
described above, was justified. This was verified for 
the s imple case of a constant strain gradient/3.  

I 

I 

12 (ex!(-2~../l(,')] ~' ...... 
I 
I 
I 

a, ( la rge < O) a = 0 a° ( la rge :> O) S~ 
rec rea t i on  zone  

z = O  
z=z  o 

Fig. 1. Propagation of an incident parallel beam inside a crystal 
distorted by a constant strain gradient fl ~- fl~. At the points where 
a = 0, along wavefields 1 and 2, a new wavefield is created taking 
a fraction exp (-2~'/lal) of the intensity Ii (i = 1,2) of the initial 
wavefieid./3 is here assumed to be positive. 
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Fig. 2. Interbranch scattering (only one wavefield, here wavefield 
[1], has been pictured for clarity). At a depth Zo, the wavefield, 
which from z =0 to z = z o propagates as a type [1] wavefield 
(black arrows from M to N), splits into two wavefields, one of 
type [I] (black arrows from N to R) and one of type [2] (white 
arrows from P to Q). 
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Secondly, if the BCM conjecture that a new wave- 
field is created exactly when a = 0 was correct, then 
in the case of a variable strain gradient/3 the intensity 
fraction of this newly created wavefield should be 
equal to exp being the value of c~ = 
/3//3~ at the point where a passes through zero. A 
numerical verification of this hypothesis is also 
described in § 3. 

attained a chosen value /3o at the point where the 
parameter a was equal to zero. The intensity of the 
newly created wavefield was then compared to that 
predicted by (2) with /3--/30. In this way, we were 
able to establish that the intensity of wavefield 
creation depended only on the value of/30 and was 
insensitive to the /3 values in all other parts of the 
trajectory. 

3. Computer experiments 

As in paper I, Takagi's equations were solved numeri- 
cally for a distorted crystal in the symmetric Bragg 
case with a narrow incident beam, using the same 
integration technique and boundary conditions. In 
contrast to paper I, however, the strain gradient was 
not small. Therefore, the propagation of the beam in 
the crystal, although still obeying the laws of 
geometrical optics (paper I, § 2), was accompanied 
by a non-negligible creation of new wavefields. Quali- 
tatively this phenomenon was readily perceptible by 
eye in the maps of wavefield intensity inside the 
crystal (Fig. 3). In order to study it in a quantitative 
way we calculated numerically the integrated 
intensity of the newly created wavefield. The calcula- 
tions were made first for a constant strain gradient 
/3. Then /3 was made variable in such a way that it 

(a) ~°Sh 

(b) <'"So 

(c) <"~So 
x 

200 pm, ~ So 

Fig. 3. Intensity distributions inside the crystal deformed with a 
strong constant strain gradient fl: (a) fl =2/3o ~7i = - 2 0 ,  (b) 
/3=3/3o ~ i = - 3 0 ,  (c) f l=5f lc ,  ~7,=-50,  (d) /3=40/3o ~7~= 
-400 .  The intensity maps were printed on the Versatec half-tone 
printer using the procedure due to Epelboin (1978) (courtesy Y. 
Epelboin). Black means no intensity. Note how the intensity of 
the new wavefield (in the direction of So) increases with/3. 

( a ) Constant  strain gradient 

From paper I [§ 2, equation (17)], we know that in 
this case the trajectory of the beam is a hyperbola. 
In the Bragg case it is given by 

t a n 0  + n ,  - [ /3x + S ( n , ) ( n , 2  - 1) ' /212 = 1. ( 1 1 )  

If the signs of fl and ai are opposite then somewhere 
along the beam path a point is reached where a = 0; 
we shall denote its coordinate by xo. From equation 
(18) in paper I, 

Xo = - S(r / , ) ( r /2-  1)1/2//3. (12) 

Let us recall that we consider only incident waves 
outside the total reflection range, i.e. In,l> 1. The 
trajectory is deflected to the crystal surface which is 
reached at the point xe: 

Xe "~- 2Xo. (13) 

The wavefields for which a, is of the same sign as/3 
do not pass through a = 0 and are deflected to the 
inside of the crystal. If/3 is large the curvature of the 
trajectory in the vicinity of a = 0 becomes very large 
and its hyperbolic shape degenerates into two straight 
lines respectively parallel to So and Sh directions 
joined by a small arc. The beam is then practically 
reflected within a small region situated inside the 
crystal. 

A series of calculations for/3 values between 3/3e 
and 100/3~ were made with the data corresponding to 
the symmetric Bragg 444 reflection in a silicon single 
crystal, for Mo Ka, radiation, neglecting absorption. 
The integrated intensity of the newly created wave- 
field was compared to that predicted by (2). The 
results are shown in Fig. 4 and in Table 1 (second 
and third columns); an excellent agreement is readily 
noted. 

( b ) Variable strain gradient 

In a crystal deformed by a constant strain gradient 
the value of /3 is the same for each point of the 
trajectory. Consequently, intensity calculations in this 
case do not allow any conclusions to be drawn con- 
cerning an eventual influence of the tie-point position 
on the intensity of wavefield creation. A study of this 
dependence is possible if one deals with strain 
gradients which are a function of x. The form of this 
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function should be sufficiently simple for interpreta- 
tion and easily adjustable through the choice 
of  parameters. After some tests we found that a 
Lorentzian function was very suitable for such 
studies: 

A 1 
/3Lx)=~" " l + [ ( x - x , . ) l B ]  2' (14) 

where A and B are parameters and x,. determines 
the position of  the maximum. The shape of  this func- 
tion is shown in Fig. 5; it is symmetrical with respect 
to x = x,., it has a maximum there with/3max =/3  (X,,) = 
A~ B and its half-width is equal to 2B. On both sides 
of  the peak it falls of[ quickly with Ix-xml; for I x -  
x,. I > 4B the values o f / 3  do not exceed 6% of  the 
maximum. Therefore, the choice of  B determines the 
lateral range of  the strain gradient while the choice 
of  A decides the spread of /3  values. 

The basic equation of  the geometrical theory* 

da =/3 dx (15) 

integrated w i t h / 3 ( x )  o f  (14) gives 

a(x) = ai + A{arctan [ ( x -  x,,) /  B] +arctan Ix,,~ B]}. 

(16) 

* Equation (5) of paper I. 

In our calculations we fixed the value of xm as 
400 ixm and that o f  B as 60 ixm so that they were 
sufficiently larger than the step of  integration which 
was equal to 1 ixm. Then, by choosing appropriate 
values o f  A and ai the dependence a(x) could be 
adjusted so that: 

1. a - - a ( x )  changed in such a way that the value 
a = 0 was attained; we denote the coordinate o f  the 
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Fig. 4. Comparison of the intensity of new wavefield creation as 
a function of lal predicted by (2) (solid line) and calculated 
from Takagi's equation (points). 
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Fig. 5. The /3 function used in the computer experiments in the 

case of a variable strain gradient (upper row, broken line), the 
resulting shape of the function a = a(x) (upper row, solid line) 
and trajectory (lower row). (a) Xo=X,,, (b) Xo=X,,+B, (c) 
X o = X m - -  B .  
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Table 1. Comparison of the relative intensity I /Io of the newly created wavefield predicted by equation (2) 
(second column) and calculated from Takagi's equation for a constant strain gradient (third column) and a 

variable strain gradient, equation (14) (fourth to tenth columns) 
ao = flo//3,. ; for other notations see § 3. 

Constant Variable strain gradient 
strain 

laoJ exp ( - 2 ~ / l a o l )  gradient Xo= xm Xo = xm + B Xo = xm - B xo= x,,, +0.5B ~ =  x , , - 0 . 5 B  xo= x,,,+ 0-25B xo = x, , , -0-25B 

3 0.1231 0"1252 0.1291 0.1347 0.1262 0.1346 0.1270 0.1317 0.1275 
4 0.2079 0.2102 0.2107 0.2146 0-2093 0.2146 0.2096 0.2122 0.2098 
5 0.2846 0.2869 0.2862 0.2891 0.2849 0"2890 0.2854 0.2870 0.2857 
6 0.3509 0.3531 0.3518 0.3542 0-3510 0-3542 0.3513 0.3524 0.3516 
8 0.4559 0.4579 0.4563 0-4580 0.4557 0.4581 0.4560 0.4565 0-4558 

10 0.5334 0.5352 0-5337 0-5351 0.5332 0-5351 0.5334 0.5337 0.5335 
12 0.5924 0.5941 0.5924 0.5936 0.5921 0.5936 0.5926 0.5924 0.5925 
14 0.6383 0.6406 0.6384 0.6400 0.6381 0.6394 0.6387 0.6383 0.6382 
16 0.6752 0-6796 0-6752 0.6760 0.6749 0.6761 0.6747 0.6751 0.6749 
18 0.7053 0.7095 0.7053 0.7061 0.7050 0.7061 0.7050 0-7052 0.7053 
20 0.7304 0"7341 0.7303 0.7310 0.7300 0.7310 0.7302 0.7302 0.7302 
30 0-8110 0.8135 0.8108 0.8115 0-8105 0.8113 0.8108 0.8107 0.8109 
40 0-8546 0.8564 0.8544 0.8547 0.8543 0.8548 0.8544 0.8543 0.8543 
50 0.8819 0.8833 0.8816 0.8820 0.8815 0.8819 0.8816 0.8815 0.8816 
60 0.9006 0.9017 0.9003 0-9005 0.9002 0.9005 0.9003 0-9002 0.9003 
80 0.9245 0-9252 0.9241 0.9243 0.9241 0.9243 0-9241 9.9240 0.9240 

100 0.9391 0-9396 0.9387 0-9390 0.9387 0.9388 0-9387 0.9386 0.9387 

point where it happened by Xo: 

a(Xo) = 0 ;  (17) 

2. the value of/3 at this point was equal to a chosen 
value/30 

/3(Xo) =/3o . (18) 

In the cases illustrated in Fig. 5 the parameters A 
and ai were chosen in such a way that a = 0 for Xo = x,,, 
x~ + B and x,, - B respectively, i.e. at the maximum 
of/3 and in both flanks. The corresponding values of 

a Cx) ,~(x) 

20 , it It 

15 ," ' ' 

10 / '  I /' ~'~ 

__--"" I " " - - . .  x[p~rn] 

-~o~ 

Ioo 2oo 3o0 ~oo soo 60o 7oo xt~,m] 
. . . . .  

• Z[ JJm]  

(c) 
Fig. 5 (cont.) 

/3o were, however, the same in the three cases. The 
values of A and a~ which satisfy both (17) and (18) 
were determined in each case from the set of 
equations 

a, + A{arctan [(Xo- x, ,) /B] + arctan [x,,/B]} = 0 
(19a) 

A 1 
1 +[(Xo-X,.)/B] 2=/3° (19b) 

obtained by substituting (16) into (17) and (14) into 
(18). 

In the first series of calculations with a variable 
strain gradient the parameters A and ai were chosen 
in such a way that Xo = x,., i.e. the tie point attained 
the apex of the dispersion surface at the same time 
as /3 attained its maximum (/3o=/3max=A/B) (Fig. 
5a). The calculations were made for a set of different 
values of/3o between 3/3c and 100/3~. The results are 
shown in Table l (fourth column). 

Although the agreement between the calculated 
and expected intensities is again very good, this series 
of results does not provide a definitive support to the 
thesis that the wavefield creation takes place only 
when a - -0 .  It could be as well concluded that it is 
simply the maximum value of/3 anywhere along the 
beam path which decides the intensity. Consequently, 
the results of the first series could not be treated as 
conclusive. 

A firmer conclusion can be reached if we choose 
Xo = x,, + B (i.e. the point where a = 0 is reached at 
the same time as the middle of one of the flanks of 
the/3 distribution, with/30 = 0"5/3max = A/2B,  see Figs. 
5b, c). 

The results of the calculations in this series, shown 
in Table 1 (fifth column for Xo =xm + B  and sixth 
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column for x0 = xm - B) are again in very good agree- 
ment with the values predicted for /3 =/30. Con- 
sequently, they indicate that the maximum value of 
13 is of no importance. However, they do not allow 
us to exclude the interpretation that it is the average 
value (/3) over a certain section of the beam path (e.g. 
corresponding to - 1 < a < + 1 ) which determines the 
intensity of the new wavefields, since (/3) in this series 
was always very near to/30. 

In order to avoid this ambiguity of interpretat: ,n 
we repeated the calculations also for two other 
choices of Xo, namely Xo=X,,,+O.5B and x o -  
x,, ± 0.25B. Then, the average values (/3) for -1  < a < 
1 differed significantly from the respective value of 
/30. The results for these series are shown in the last 
four columns of Table 1. 

In all these calculations, regardless of the choice 
of Xo, we obtained a very good agreement with the 
theoretical values of the intensity. Therefore, we are 
able to conclude that it was indeed the value of the 
strain gradient /3 in the immediate vicinity of the 
point where a = 0 which determined the intensity of 
the phenomenon of new wavefield creation. 

4. Appl i ca t ion  to the case  o f  a screw d i s locat ion  

As an example of practical application of the 
approach presented in §§ 2 and 3 we shall discuss the 
case of a screw dislocation normal to the crystal 
surface. This case was treated theoretically by Bed- 
ynska (1973) who obtained for the first time simula- 
tions of defect contrast in the Bragg case by solving 
numerically Takagi's equations. With remarkable 
experimental skill Bubfikova & Sourek (1976) suc- 
ceeded in demonstrating the fine fringe structure of 
the contrast, predicted by Bedynska's simulations. 
The fringe distances in their topographs, equal to 
those in the simulations (Bedynska, Bubfikova & 
Sourek, 1976) were in perfect agreement with the 
simple formula derived in the theoretical explanation 
of the origin of the fringes (Bedynska, 1978). We shall 
show that by applying an analysis similar to that of 
§ 3, based on geometrical optics and BCM results 
[equation (2)], it has now become possible also to 
explain some other features of Bedynska's contrast 
which were inexplicable without such an approach. 
Bedynska, Bubfikova & Sourek (1976) obtained 
plane-wave topographs in the double-crystal arrange- 
ment for five different incidence angles corresponding 
to JrliJ between 1 and 1-5 in our notation and com- 
pared them to computer simulations. The topographs 
and (more distinctly) the simulations presented 
characteristic fringes, besides the principal black and 
white contrast known from previous works [notably 
those of Bonse (1958) and Renninger ( 1965)]. A typi- 
cal simulation is shown in Fig. 6 (courtesy T. Bed- 
ynska). According to Bedynska's model (Bedynska, 
1978), the fringes visible on all simulations arise as 

a result of interference between the incident wave 
and the new wavefields created in the vicinity of the 
dislocation core where the strain gradient is large. 
Since the difference laKxl in the wave-vector com- 
ponents parallel to the surface between the interfering 
waves is 

IAK,,I=I,7,I/A (20)  

(in our notation), the fringe distances along the sur- 
face are easily calculated as 

Ax= A/Irl,I, (21) 
in full accordance with those measured in the simula- 
tions and topographs. 

Two features of the images could not be explained, 
however, by this model: 

(i) The lateral extent of  the fringes 

In order to estimate the value of y (the coordinate 
normal to the plane of incidence) for which fringes 
should cease to be visible, Bedynska (1978) assumed 
that the strain gradient should not exceed the critical 
value/3c: 

1/31</3~ (22) 
Since in this case /3 is a function of x with y as a 
parameter 

b sin 20t~ xy 
/3(x) = -  7r(xhXa)t/2 (x 2 +y2)2, (23) 

where b is the length of the Burgers vector (we 
assume C = I )  and_1/31 attains maximum values 
/3max for x,, = ± y/~/3, 

b sin 20B 9 1 
/3max ,TT(XhX~)I/2 16x/3 y2 '  (24) 

E :::t. 0 

30 

60 
0 30 60 

el , , . . ._  
, , .-  ~ ( ~ . m )  

Fig. 6. The intensity distribution on the crystal surface calculated 
by Bedynska, Bub~kova & Sourek (1976) (courtesy T. Bedynska). 
Si 422 reflection, Mo Ka 1 radiation,, rli-- - 1.5. Note that the 
fringes are the most intense about 10 ~m from the line y = 0, i.e. 
the plane of incidence containing the dislocation line. 
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the condition (22) gives for this case 

ly[>  18.5 I~m. 

This limiting value of 18.5 ~m is independent of rh. 
However, in some of the simulations oscillations of 
the intensity were still visible for [Yl exceeding 30 p.m. 

(ii) The intensity of  the fringes 

The maximum intensity of the fringes is obtained 
in the planes of incidence for which y is clearly far 
from zero, for instance about 10 i~m for r/, = -  1.49 
(Fig. 6). At the same time the value o fy  corresponding 
to the maximum fringe intensity depends on the value 
of r/~. 

Neither of these effects could be explained by Bed- 
ynska's model. 

In order to explain (i) we shall integrate for [rhl > 1 
the basic equation of the geometrical theory (15) with 
/3 given by (23). The integration gives the following 
dependence a = a(x).  

yb sin20B { 1 1 '~ 
a = ai +zTr(xhXf,)l/2\x2 + y2 2 xi +y2]  (25) 

with a, = S(rh)(rl 2 -  1) 1/2 and x, the coordinate of the 
point of incidence of the beam. Fig. 7 shows the shape 
of a for a chosen set of parameters a~, x~ and y together 
with /3 =/3(x)  and the resulting trajectory. Creation 
of new wavefields should take place wherever a = 0 
with the intensity given by (2). Now, a can attain the 
zero value if max ([a - a~[) > la, I equivalent to [a(0) - 
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Fig. 7. The case o f  a screw d is loca t ion  normal  to the crystal  surface 

(Bedynska,  Bubfikova & Sourek,  1976) f rom the view-point  of  
geometr ical  optics o f  X-rays. (a )  The funct ion/3  = /3 (x )  (broken 
line) and a = a(x) (solid line); (b) the resulting ray trajectory.  
L is the project ion of  the dislocat ion on the incidence plane. Si 
422 reflection,  Mo Ka~ radiat ion,  f l~=0.0327 [Ixm-I], xi = 
- 200 i~m, rh = - 1 "5, y = 8 ~m. 

ai]> Jail, which can be satisfied only if 

b sin 20n 1 
l y l<  

2~(xhx~)  '/2 (n,-12 ),/2 
2 (we assume x, >>y2). 

For the case in question this condition gives, for 
example,  lYl<50 I~m for In,I = 1.1, lY1<34"6 ~m for 
1,7,1-- 1.2 and lyl < 20.6 txm for In, I = 1.5. These values 
are in better accord with the simulated images of 
Bedynska, Bubfikova & Sourek (1976) than the value 
of 18.5 I~m evaluated above. 

As to the problems in (ii), they can be resolved by 
a careful examination of the trajectory (Fig. 7b) in 
the case when a attains zero. There are two such 
points on the trajectory, AI and A2 (Fig. 8). Besides, 
the new wavefield created at AI also has one point 
(A3) where a - - 0  since it propagates according to 
geometrical theory, symmetrically to the original 
wavefield. All these three points have the same 
absolute value Ixol of the x coordinate and con- 
sequently the same value of I/3ol. 

Therefore, the phenomenon of new-wavefield 
creation is equally intense in each of them and it 
obeys (2). Applying (2) successively in Ai, A2 and 
A 3 w e  obtain for the intensity of new wavefields 
arriving at the crystal surface 

I = L + Is = 210 exp - I/3ol } l - e x p  \ I/3ol/_1 

It attains its maximum when 

exp ( -  2rr/3c/I/3oL) = 0" 5 

o r  

I /3o l  = 9 . 0 6 / 3 c .  

Therefore, the fringes should be most intense in those 
cases when the value I/3ol of the strain gradient (at 
the point where a = 0 is reached) happens to be equal 
to I/3ol = 9.06/3,. For a given incidence parameter r/i 
the value of y for which such a coincidence takes 

L C2). 
14..-*" 

.C'l) , . - " "  (23. 

' - I . ~ )  

Fig. 8. Creat ion o f  new wavefields in the case of  a screw dislocat ion 
normal  to the surface. Solid line - wavefield (1), broken line - 
wavefield (2). A1, A2 and A 3 - points where a = 0 ;  L is the 
project ion of  the dislocation line on the incidence plane. 
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place can be determined from the following set of 
equations: 

I~(xo)l = 9.06/3c 

a(Xo) = S( 2 t/2 ~,)(~,-1) 

yb sin 20~ [ 1 
+27r(XhX~) I/2 ~x~ + y 2 

,) 
x2 + y 2 =0. 

In this way we may obtain the theoretical dependence 
of the y of maximal fringe intensity on r/i. Indeed, 
by solving the above set of equations we readily 
obtained the same type of dependence of the 
maximum fringe intensity that can be seen in the 
simulations. The agreement is, however, only qualita- 
tive. This is because the wavefields (/4 and 15) arriving 
at the crystal surface interfere. Certainly, it is also an 
important factor that the region where the trajectories 
change dramatically and wavefield creation takes 
place is quite small (21xol of the order of 20 i~m) 
compared with the wave-front width in the real topo- 
graphic conditions where a plane wave was employed. 

5. Conclusion 

In this paper a very important result concerning X-ray 
propagation has been obtained: geometrical optics 
results can be used if one takes into account the 
creation of new wavefields which occurs along every 
beam trajectory at the point where a =0  with an 
intensity directly related to the value of the strain 
gradient at this point. This result has been demon- 
strated here in the Bragg case but it is general enough 
to be valid also in the Laue case. 

Such an 'extended' geometrical-optics treatment 
when applied to any practical type of distortion, e.g. 
a dislocation line, should lead to a better understand- 
ing of the contrast origin in X-ray topographs. 

As pointed out, geometrical optics cannot be 
applied in the total reflection range of the Bragg case. 
It seems, however, that there should be a similarity 
between the mechanism of the new wavefield creation 
in strongly deformed crystals and the phenomena 
occurring during total reflection. In this respect, it is 
obviously worthwhile to study this mechanism in 
more detail. 

The authors wish to thank Dr Bedynska for her 
consent to reproduce here one of her simulations 
(Fig. 6). They are also grateful to Dr Y. Epelboin 
whose representation routine was a helpful tool for 
the visualization of the phenomenon ofnew-wavefield 
creation (Fig. 3). One of us (JG) acknowledges the 
financial support of CNRS for subsidizing a one-year 
stay at the Laboratoire de Minrralogie-Cristal- 
lographie in Paris. 

References 

AUTHIER, A. & BALIBAR, F. (1970). Acta Cryst. A26, 647-654. 
BALIBAR, F. (1969a). Acta Cryst. A25, 650-658. 
BALIBAR, F. (1969b). Thesis, Paris. 
BALIBAR, F., CHUKHOVSKII, F. N. & MALGRANGE, C. (1983). 

Acta Cryst. A39, 387-399. 
BAL1BAR, F., EPELBOIN, Y. & MALGRANGE, C. (1975). Acta 

Crvst. A31,836-840. 
BEDYNSKA, T. (1973). Phys. Status Solidi, AI8, 147-154. 
BEDYNSKA, T. (1978). Dissertation, Warsaw (in Polish). 
BEDYNSKA, T., BUBAKOVA, R. & SOUREK, Z. (1976). Phys. Status 

Solidi, A36, 509-516. 
BONSE, U. (1958). Z. Phys. 153, 278-296. 
BUBAKOVA, R. & SOUREK, Z. (1976). Phys. Status Solidi, A35, 

55-60. 
EPELBOIN, Y. (1978). J. Appl. Cryst. 11,675-680. 
GRONKOWSKI, J. & MALGRANGE, C. (1984). Acta Cryst. A40, 

507-514. 
PENNING, P. & POLDER, D. (1961). Philips Res. Rep. 16, 419-440. 
RENNINGER, M. (1965). Z. Angew. Phys. 19, 20-35. 
TAKAGI, S. (1969). J. Phys. Soc. Jpn, 26, 1239-1253. 

Acta Cryst. (1984). A40, 522-526 

A Matrix Basis for CBED Pattern Analysis 

BY P. GOODMAN 

CSIRO, Division of  Chemical Physics, Melbourne, Australia 

(Received 31 July 1983 ; accepted 4 April 1984) 

Abstract 

A simple construction procedure is given for conver- 
gent-beam electron diffraction (CBED) pattern 
matrices as symmetry elements in diffraction space 
coordinates. These are constructed from a limited set 
of point-group elements, namely those belonging to 
the layer groups of Alexander & Hermann [Z. Kristal- 

0108-7673/84/050522-05501.50 

logr. (1929), 70, 328-345]. As a result a transformation 
is found between crystal and diffraction space in 
which the three-dimensional crystal symmetries trans- 
form into four-dimensional intensity distributions. 
Equivalent anti-symmetric matrices which operate on 
amplitudes rather than intensities are found for non- 
symmorphic space-group elements. 
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